terça-feira, 22 de março de 2011

2) Variáveis Químicas

2- Variáveis Químicas:
A) Alumínio
B) Chumbo
C) Cobre
D) DDT
E) Demanda Bioquímica de Oxigênio - DBO
F) Demanda Química de Oxigênio - DQO
G) Ferro Total
H) Fósforo Total
I) Manganês
J) Potencial Hidrogeniônico - pH
L) Potencial de Formação de Trihalometanos - THM


A) Alumínio
O alumínio é produzido e consumido em grandes quantidades em muitas nações, sendo o Brasil um grande produtor, em torno de 762.000 t/ano. É o principal constituinte de um grande número de componentes atmosféricos, particularmente de poeira derivada de solos e partículas originadas da combustão de carvão. Em áreas urbanas, a concentração de alumínio na poeira das ruas varia de 3,7 a 11,6 µg/kg. No ar, a concentração varia de 0,5 ng/m³ sobre a Antártica a mais de 1000 ng/m³ em áreas industrializadas. Na água, o alumínio é complexado e influenciado pelo pH, temperatura e a presença de fluoretos, sulfatos, matéria orgânica e outros ligantes. A solubilidade é baixa em pH entre 5,5 e 6,0. O alumínio deve apresentar maiores concentrações em profundidade, onde o pH é menor e pode ocorrer anaerobiose. Se a estratificação, e conseqüente anaerobiose, não for muito forte, o teor de alumínio diminui no corpo de água como um todo, à medida que se distancia a estação das chuvas. O aumento da concentração de alumínio está associado com o período de chuvas e, portanto, com a alta turbidez.

Outro aspecto chave da química do alumínio é sua dissolução no solo para neutralizar a entrada de ácidos com as chuvas ácidas. Nesta forma, ele é extremamente tóxico à vegetação e pode ser escoado para os corpos d'água.

A principal via de exposição humana não ocupacional é pela ingestão de alimentos e água. A toxicidade aguda por alumínio metálico e seus compostos é baixa, variando o LD50 oral de algumas centenas a 1.000 mg de alumínio 1 kg peso corpóreo por dia. A osteomalacia é observada em humanos expostos ao alumínio. Há considerável evidência que o alumínio é neurotóxico. Em experimentos com animais, porém há uma grande variação desse efeito, dependendo da espécie analisada. O acúmulo de alumínio no homem tem sido associado ao aumento de casos de demência senil do tipo Alzheimer. Brown (1989, apud Moore, 1990) correlacionou o aumento do risco relativo da ocorrência do Mal de Alzheimer com o nível de alumínio na água de abastecimento. Não há indicação de carcinogenicidade para o alumínio.

B) Chumbo
O chumbo está presente no ar, no tabaco, nas bebidas e nos alimentos, nestes últimos, naturalmente, por contaminação e na embalagem. Está presente na água devido às descargas de efluentes industriais como por exemplo os efluentes das indústrias de acumuladores (baterias), bem como devido ao uso indevido de tintas e tubulações e acessórios a base de chumbo (materiais de construção). O chumbo e seus compostos também são utilizados em eletrodeposição e metalurgia. Constitui veneno cumulativo, provocando um envenenamento crônico denominado saturnismo, que consiste em efeito sobre o sistema nervoso central com conseqüências bastante sérias. Outros sintomas de uma exposição crônica ao chumbo, quando o efeito ocorre no sistema nervoso central, são: tontura, irritabilidade, dor de cabeça, perda de memória, entre outros. Quando o efeito ocorre no sistema periférico o sintoma é a deficiência dos músculos extensores. A toxicidade do chumbo, quando aguda, é caracterizada pela sede intensa, sabor metálico, inflamação gastrointestinal, vômitos e diarréias.

O chumbo é padrão de potabilidade, sendo fixado o valor máximo permissível de 0,03 mg/L pela Portaria 1469 do Ministério da Saúde, mesmo valor adotado nos Estados Unidos. No entanto, naquele país, estudos estão sendo conduzidos no sentido de reduzir o padrão para 0,01 mg/L. É também padrão de emissão de esgotos e de classificação das águas naturais. Aos peixes, as doses fatais, no geral, variam de 0,1 a 0,4 mg/L, embora, em condições experimentais, alguns resistam até 10 mg/L. Outros organismos (moluscos, crustáceos, mosquitos quironomídeos e simulídeos, vermes oligoquetos, sanguessugas e insetos tricópteros), desaparecem após a morte dos peixes, em concentrações superiores a 0,3 mg/L. A ação sobre os peixes é semelhante à do níquel e do zinco.

C) Cobre
O cobre ocorre geralmente nas águas, naturalmente, em concentrações inferiores a 20 µg/L. Quando em concentrações elevadas, é prejudicial à saúde e confere sabor às águas. Segundo pesquisas efetuadas, é necessária uma concentração de 20 mg/L de cobre ou um teor total de 100 mg/L por dia na água para produzirem intoxicações humanas com lesões no fígado. No entanto, concentrações de 5 mg/L tornam a água absolutamente impalatável, devido ao gosto produzido. Interessante é notar, todavia, que o trigo contém concentrações variáveis de 190 a 800 mg/kg de cobre, a aveia 40 a 200 mg/kg, a lentilha 110 a 150 mg/kg e a ervilha de 13 a 110 mg/kg. As ostras podem conter até 2000 mg/kg de cobre. O cobre, em pequenas quantidades é até benéfico ao organismo humano, catalisando a assimilação do ferro e seu aproveitamento na síntese da hemoglobina do sangue humano, facilitando a cura de anemias.

Para os peixes, muito mais que para o homem, as doses elevadas de cobre são extremamente nocivas. Assim, trutas, carpas, bagres, peixes vermelhos de aquários ornamentais e outros, morrem em dosagens de 0,5 mg/L. Os peixes morrem pela coagulação do muco das brânquias e conseqüente asfixia (ação oligodinâmica). Os microrganismos perecem em concentrações superiores a 1,0 mg/L. O Cobre aplicado em sua forma de sulfato de cobre, CuSO45H2O, em dosagens de 0,5 mg/L é um poderoso algicida. O Water Quality Criteria indica a concentração de 1,0 mg/L de cobre como máxima permissível para águas reservadas para o abastecimento público.

As fontes de cobre para o meio ambiente incluem corrosão de tubulações de latão por águas ácidas, efluentes de estações de tratamento de esgotos, uso de compostos de cobre como algicidas aquáticos, escoamento superficial e contaminação da água subterrânea a partir de usos agrícolas do cobre como fungicida e pesticida no tratamento de solos e efluentes, e precipitação atmosférica de fontes industriais. As principais fontes industriais incluem indústrias de mineração, fundição e refinação.

D) DDT
O DDT técnico é principalmente composto pelo isômero p,p' e sua estrutura permite diferentes formas de isômeros, como o,p'-DDT. É um inseticida persistente que tem seu uso restrito ou banido em vários países, exceto para campanhas de saúde pública no controle de doenças transmitidas por insetos.

O DDT e seus metabólitos podem ser transportados de um meio para outro, no ambiente, por processos de solubilização, adsorção, bioacumulação ou volatilização. Na superfície do solo ocorre a foto-oxidação do DDT, sendo a fotodesclorinação a principal reação, que acontece em dois estágios: rápida redução do cloro alifático e lenta redução do cloro aromático. A reação tem como produtos primários o DDE, o DDD e o ácido clorídrico. Na água, a maior parte do DDT encontra-se firmemente ligada a partículas e assim, permanece, indo depositar-se no leito de rios e mares.

O DDT, DDE e DDD são altamente lipossolúveis. Esta propriedade, aliada à meia-vida extremamente longa, tem resultado em bioacumulação, onde os níveis presentes nos organismos excedem aqueles encontrados no ambiente circundante. O grau de acumulação varia com a espécie, duração da exposição, concentração da substância no meio e as condições ambientais. Quando presente na água, o DDT é bioconcentrado no plâncton marinho e de água doce, em insetos, moluscos, outros invertebrados e peixes.

Tipicamente, a exposição humana e animal não ocorre apenas ao DDT mas sim a uma mistura dos três compostos. Isto porque DDE e DDD aparecem como impurezas do DDT técnico, são produtos de degradação ambiental e são produzidos no processo de biotransformação do DDT. A via digestiva é considerada a mais significativa via de entrada do DDT no organismo humano, devido ao consumo de alimentos ou uso de utensílios contaminados. Os principais efeitos do DDT são: neurotoxicidade, hepatoxicidade, efeitos metabólicos e efeitos reprodutivos e câncer. Nos seres humanos, como em outras espécies, o DDT se biotransforma em DDE, que é acumulado mais facilmente que o DDT.

E) Demanda Bioquímica de Oxigênio (DBO5,20)
A DBO5,20 de uma água é a quantidade de oxigênio necessária para oxidar a matéria orgânica por decomposição microbiana aeróbia para uma forma inorgânica estável. A DBO5,20 é normalmente considerada como a quantidade de oxigênio consumido durante um determinado período de tempo, numa temperatura de incubação específica. Um período de tempo de 5 dias numa temperatura de incubação de 20°C é freqüentemente usado e referido como DBO5,20.

Os microrganismos desempenham este importante papel no tratamento de esgotos pois necessitam desta energia liberada, além de outros nutrientes que por ventura não estejam presentes em quantidades suficientes nos despejos, para exercer suas funções celulares tais como reprodução e locomoção, o que genericamente se denomina síntese celular. Quando passa a ocorrer insuficiência de nutrientes no meio, os microrganismos sobreviventes passam a se alimentar do material das células que têm a membrana celular rompida. Este processo se denomina respiração endógena. Finalmente, há neste circuito, compostos que os microrganismos são incapazes de produzir enzimas que possam romper suas ligações químicas, permanecendo inalterados.

Ao conjunto destes compostos dá-se o nome de resíduo não biodegradável ou recalcitrante.

Pelo fato de a DBO5,20 somente medir a quantidade de oxigênio consumido num teste padronizado, não indica a presença de matéria não biodegradável, nem leva em consideração o efeito tóxico ou inibidor de materiais sobre a atividade microbiana.

Os maiores aumentos em termos de DBO5,20, num corpo d'água, são provocados por despejos de origem predominantemente orgânica. A presença de um alto teor de matéria orgânica pode induzir à completa extinção do oxigênio na água, provocando o desaparecimento de peixes e outras formas de vida aquática.

Um elevado valor da DBO5,20 pode indicar um incremento da microflora presente e interferir no equilíbrio da vida aquática, além de produzir sabores e odores desagradáveis e, ainda, pode obstruir os filtros de areia utilizados nas estações de tratamento de água.

F) Demanda Química de Oxigênio (DQO)
É a quantidade de oxigênio necessária para oxidação da matéria orgânica através de um agente químico. Os valores da DQO normalmente são maiores que os da DBO5,20, sendo o teste realizado num prazo menor. O aumento da concentração de DQO num corpo d'água se deve principalmente a despejos de origem industrial.

A DQO é um parâmetro indispensável nos estudos de caracterização de esgotos sanitários e de efluentes industriais. A DQO é muito útil quando utilizada conjuntamente com a DBO5,20 para observar a biodegradabilidade de despejos. Sabe-se que o poder de oxidação do dicromato de potássio é maior do que o que resulta mediante a ação de microrganismos, exceto raríssimos casos como hidrocarbonetos aromáticos e piridina. Desta forma os resultados da DQO de uma amostra são superiores aos de DBO5,20. Como na DBO5,20 mede-se apenas a fração biodegradável, quanto mais este valor se aproximar da DQO significa que mais facilmente biodegradável será o efluente. É comum aplicar-se tratamentos biológicos para efluentes com relações DQO/DBO5,20 de 3/1, por exemplo. Mas valores muito elevados desta relação indicam grandes possibilidades de insucesso, uma vez que a fração biodegradável torna-se pequena, tendo-se ainda o tratamento biológico prejudicado pelo efeito tóxico sobre os microrganismos exercido pela fração não biodegradável.

A DQO tem se demonstrado um parâmetro bastante eficiente no controle de sistemas de tratamentos anaeróbios de esgotos sanitários e de efluentes industriais. Após o impulso que estes sistemas tiveram em seus desenvolvimentos a partir da década de 70, quando novos modelos de reatores foram criados e muitos estudos foram conduzidos, observa-se o uso prioritário da DQO para o controle das cargas aplicadas e das eficiências obtidas. A DBO5,20 nestes casos tem sido utilizada apenas como parâmetro secundário, mais para se verificar o atendimento à legislação, uma vez que tanto a legislação federal quanto a do Estado de São Paulo não incluem a DQO. Parece que os sólidos carreados dos reatores anaeróbios devido à ascensão das bolhas de gás produzidas ou devido ao escoamento, trazem maiores desvios nos resultados de DBO5,20 do que nos de DQO.

Outro uso importante que se faz da DQO é para a previsão das diluições das amostras na análise de DBO5,20. Como o valor da DQO é superior, e pode ser obtido no mesmo dia da coleta, poderá ser utilizado para balizar as diluições. No entanto, deve-se observar que as relações DQO/DBO5,20 são diferentes para os diversos efluentes e que, para um mesmo efluente, a relação se altera mediante tratamento, especialmente o biológico. Desta forma, um efluente bruto que apresente relação DQO/DBO5,20 igual a 3/1, poderá, por exemplo, apresentar relação da ordem de 10/1 após tratamento biológico, que atua em maior extensão sobre a DBO5,20.

G) Ferro Total
O ferro aparece principalmente em águas subterrâneas devido à dissolução do minério pelo gás carbônico da água, conforme a reação:
Fe + CO2 + ½ O2 à FeCO3

O carbonato ferroso é solúvel e frequentemente é encontrado em águas de poços contendo elevados níveis de concentração de ferro. Nas águas superficiais, o nível de ferro aumenta nas estações chuvosas devido ao carreamento de solos e a ocorrência de processos de erosão das margens. Também poderá ser importante a contribuição devida à efluentes industriais, pois muitas indústrias metalúrgicas desenvolvem atividades de remoção da camada oxidada (ferrugem) das peças antes de seu uso, processo conhecido por decapagem, que normalmente é procedida através da passagem da peça em banho ácido.
Nas águas tratadas para abastecimento público, o emprego de coagulantes a base de ferro provoca elevação em seu teor.

O ferro, apesar de não se constituir em um tóxico, traz diversos problemas para o abastecimento público de água. Confere cor e sabor à água, provocando manchas em roupas e utensílios sanitários. Também traz o problema do desenvolvimento de depósitos em canalizações e de ferro-bactérias, provocando a contaminação biológica da água na própria rede de distribuição. Por estes motivos, o ferro constitui-se em padrão de potabilidade, tendo sido estabelecida a concentração limite de 0,3 mg/L na Portaria 1469 do Ministério da Saúde. É também padrão de emissão de esgotos e de classificação das águas naturais. No Estado de São Paulo estabelece-se o limite de 15 mg/L para concentração de ferro solúvel em efluentes descarregados na rede coletora de esgotos seguidas de tratamento (Decreto no 8468).

No tratamento de águas para abastecimento, deve-se destacar a influência da presença de ferro na etapa de coagulação e floculação. As águas que contêm ferro caracterizam-se por apresentar cor elevada e turbidez baixa. Os flocos formados geralmente são pequenos, ditos "pontuais", com velocidades de sedimentação muito baixa. Em muitas estações de tratamento de água este problema só é resolvido mediante a aplicação de cloro, a chamada pré-cloração. Através da oxidação do ferro pelo cloro, os flocos tornam-se maiores e a estação passa a apresentar um funcionamento aceitável. No entanto, é conceito clássico que, por outro lado, a pré-cloração de águas deve ser evitada, pois em caso da existência de certos compostos orgânicos chamados precursores, o cloro reage com eles formando trihalometanos, associados ao desenvolvimento do câncer.

H) Fósforo Total
O fósforo aparece em águas naturais devido principalmente às descargas de esgotos sanitários. Nestes, os detergentes superfosfatados empregados em larga escala domesticamente constituem a principal fonte, além da própria matéria fecal, que é rica em proteínas. Alguns efluentes industriais, como os de indústrias de fertilizantes, pesticidas, químicas em geral, conservas alimentícias, abatedouros, frigoríficos e laticínios, apresentam fósforo em quantidades excessivas. As águas drenadas em áreas agrícolas e urbanas também podem provocar a presença excessiva de fósforo em águas naturais.

O fósforo pode se apresentar nas águas sob três formas diferentes. Os fosfatos orgânicos são a forma em que o fósforo compõe moléculas orgânicas, como a de um detergente, por exemplo. Os ortofosfatos, por outro lado, são representados pelos radicais, que se combinam com cátions formando sais inorgânicos nas águas. Os polifosfatos ou fosfatos condensados são polímeros de ortofosfatos. No entanto, esta terceira forma não é muito importante nos estudos de controle de qualidade das águas, porque os polifosfatos sofrem hidrólise se convertendo rapidamente em ortofosfatos nas águas naturais.

Assim como o nitrogênio, o fósforo constitui-se em um dos principais nutrientes para os processos biológicos, ou seja, é um dos chamados macro-nutrientes, por ser exigido também em grandes quantidades pelas células. Nesta qualidade, torna-se parâmetro imprescindível em programas de caracterização de efluentes industriais que se pretende tratar por processo biológico. Em processos aeróbios, como informado anteriormente, exige-se uma relação DBO
5:N:P mínima de 100:5:1, enquanto que em processos anaeróbios tem-se exigido a relação DQO:N:P mínima de 350:7:1. Os esgotos sanitários no Brasil apresentam, tipicamente, concentração de fósforo total na faixa de 6 a 10 mgP/L, não exercendo efeito limitante sobre os tratamento biológicos. Alguns efluentes industriais, porém, não possuem fósforo em suas composições, ou apresentam concentrações muito baixas. Neste caso, deve-se adicionar artificialmente compostos contendo fósforo como o monoamôneo-fosfato (MAP) que, por ser usado em larga escala como fertilizante, apresenta custo relativamente baixo. Ainda por ser nutriente para processos biológicos, o excesso de fósforo em esgotos sanitários e efluentes industriais, por outro lado, conduz a processos de eutrofização das águas naturais.


I) Manganês
O comportamento do manganês nas águas é muito semelhante ao do ferro em seus aspectos os mais diversos, sendo que a sua ocorrência é mais rara. O manganês desenvolve coloração negra na água, podendo-se se apresentar nos estados de oxidação Mn+
2 (forma mais solúvel) e Mn+4 (forma menos solúvel).

A concentração de manganês menor que 0,05 mg/L geralmente é aceitável em mananciais, devido ao fato de não ocorrerem, nesta faixa de concentração, manifestações de manchas negras ou depósitos de seu óxido nos sistemas de abastecimento de água.

Raramente atinge concentrações de 1,0 mg/L em águas superficiais naturais e, normalmente, está presente em quantidades de 0,2 mg/L ou menos. É muito usado na indústria do aço, na fabricação de ligas metálicas e baterias e na indústria química em tintas, vernizes, fogos de artifícios e fertilizantes, entre outros.

J) Potencial Hidrogeniônico (pH)
Por influir em diversos equilíbrios químicos que ocorrem naturalmente ou em processos unitários de tratamento de águas, o pH é um parâmetro importante em muitos estudos no campo do saneamento ambiental.

A influência do pH sobre os ecossistemas aquáticos naturais dá-se diretamente devido a seus efeitos sobre a fisiologia das diversas espécies. Também o efeito indireto é muito importante podendo, determinadas condições de pH contribuírem para a precipitação de elementos químicos tóxicos como metais pesados; outras condições podem exercer efeitos sobre as solubilidades de nutrientes. Desta forma, as restrições de faixas de pH são estabelecidas para as diversas classes de águas naturais, tanto de acordo com a legislação federal (Resolução no 20 do CONAMA, de junho de 1986), como pela legislação do Estado de São Paulo (Decreto no 8468/76). Os critérios de proteção à vida aquática fixam o pH entre 6 e 9.

Nos ecossistemas formados nos tratamentos biológicos de esgotos, o pH é também uma condição que influi decisivamente no processo. Normalmente, a condição de pH que corresponde à formação de um ecossistema mais diversificado e a um tratamento mais estável é a de neutralidade, tanto em meios aeróbios como nos anaeróbios. Nos reatores anaeróbios, a acidificação do meio é acusada pelo decréscimo do pH do lodo, indicando situação de desequilíbrio. A produção de ácidos orgânicos voláteis pelas bactérias acidificadoras e a não utilização destes últimos pelas metanobactérias, é uma situação de desequilíbrio que pode ser devido a diversas causas. O decréscimo no valor do pH que a princípio funciona como indicador do desequilíbrio, passa a ser causa se não for corrigido a tempo. É possível que alguns efluentes industriais possam ser tratados biologicamente em seus valores naturais de pH, por exemplo, em torno de 5,0. Nesta condição, o meio talvez não permita uma grande diversificação hidrobiológica, mas pode acontecer que os grupos mais resistentes, algumas bactérias e fungos, principalmente, tornem possível a manutenção de um tratamento eficiente e estável. Mas, em geral, procede-se à neutralização prévia do pH dos efluentes industriais antes de serem submetidos ao tratamento biológico.

Nas estações de tratamento de águas, são várias as unidades cujo controle envolve as determinações de pH. A coagulação e a floculação que a água sofre inicialmente é um processo unitário dependente do pH; existe uma condição denominada "pH ótimo" de floculação que corresponde à situação em que as partículas coloidais apresentam menor quantidade de carga eletrostática superficial. A desinfecção pelo cloro é um outro processo dependente do pH. Em meio ácido, a dissociação do ácido hipocloroso formando hipoclorito é menor, sendo o processo mais eficiente, conforme será visto. A própria distribuição da água final é afetada pelo pH. Sabe-se que as águas ácidas são corrosivas, ao passo que as alcalinas são incrustantes. Por isso o pH da água final deve ser controlado, para que os carbonatos presentes sejam equilibrados e não ocorra nenhum dos dois efeitos indesejados mencionados. O pH é padrão de potabilidade, devendo as águas para abastecimento público apresentar valores entre 6,5 e 8,5, de acordo com a Portaria 1469 do Ministério da Saúde.

Outros processos físico-químicos de tratamento como o abrandamento pela cal, são dependentes do pH.

No tratamento físico-químico de efluentes industriais muitos são os exemplos de reações dependentes do pH: a precipitação química de metais pesados ocorre em pH elevado, à oxidação química de cianeto ocorre em pH elevado, a redução do cromo hexavalente à forma trivalente ocorre em pH baixo; a oxidação química de fenóis em pH baixo; a quebra de emulsões oleosas mediante acidificação; o arraste de amônia convertida à forma gasosa se dá mediante elevação de pH, etc. Desta forma, o pH é um parâmetro importante no controle dos processos físico-químicos de tratamento de efluentes industriais. Constitui-se também em padrão de emissão de esgotos e de efluentes líquidos industriais, tanto pela legislação federal quanto pela estadual. Na legislação do Estado de São Paulo, estabelece-se faixa de pH entre 5 e 9 para o lançamento direto nos corpos receptores (artigo 18 do Decreto 8468/76) e entre 6 e 10 para o lançamento na rede pública seguida de estação de tratamento de esgotos
(artigo 19-A).

L) Potencial de Formação de Trihalometanos - THM
A utilização de parâmetros não específicos para avaliar a eficiência de um sistema de tratamento, bem como a qualidade da água de um determinado manancial é uma prática comum nas Estações de Tratamento de Água (ETAs). O parâmetro turbidez, por exemplo, é amplamente utilizado nas ETAs para o controle e o monitoramento operacional da remoção de material particulado. Outros parâmetros deste tipo utilizados comumente são a cor e a densidade de coliformes termotolerantes. Estes parâmetros não específicos podem ser uma valiosa ferramenta para uma primeira avaliação das características da qualidade de águas em mananciais destinados ao abastecimento público. Também podem ser de grande utilidade para verificar rapidamente mudanças na qualidade da água dentro do processo de tratamento.

Além disso, com a preocupação sobre a formação de compostos organoclorados leves (como por exemplo, clorofórmio) durante o processo de cloração, chamados trihalometanos, torna-se necessária uma avaliação do manancial em relação à quantidade de precursores destes compostos.

A utilização do potencial de formação de trihalometanos, como um parâmetro não específico da medida de precursores de THMs, pode ser usado para comparar a qualidade de vários mananciais de água bruta com potencial para abastecimento, com a possibilidade de produção de concentrações elevadas de THMs em água tratada durante os processos de tratamento e na distribuição.

Nenhum comentário:

Postar um comentário