Mais etapas do Método Científico

Etapa 4: Experiência controlada
Muitas pessoas pensam em uma experiência como algo que acontece em um laboratório. Mas as experiências não necessariamente envolvem as bancadas de um laboratório ou tubos de ensaio. No entanto, elas precisam ser montadas de forma a testar uma hipótese específica e precisam ser controladas. Controlar uma experiência significa controlar todas as variáveis, de modo que apenas uma esteja aberta a estudo. A variável independente é a variável controlada e manipulada pelo responsável pela experiência, enquanto a variável dependente não o é. À medida que a variável independente é manipulada, a variável dependente é mensurada em busca de variações. No exemplo sobre o carro, a variável independente é a forma da carroceria. A variável dependente - aquilo que medimos para determinar o efeito do perfil do carro - pode ser a velocidade, o consumo de combustível ou uma medição direta da pressão de ar exercida sobre o carro.
scientist
Noel Hendrickson/Digital Vision/
Getty Images

Para se controlar uma experiência é necessário que haja um grupo experimental e um grupo de controle
Controlar uma experiência também significa montá-la de forma que haja um grupo de controle e um grupo experimental. O grupo de controle permite que o responsável pela experiência estabeleça um parâmetro de comparação, com números que ele possa confiar e que não resultem das mudanças geradas pela experiência. Por exemplo, na experiência de Pasteur, o que teria acontecido caso ele tivesse usado apenas o frasco de gargalo curvo? Poderíamos saber com certeza que a falta de bactérias no frasco se devia à sua forma? Não. Ele precisava comparar os resultados do grupo experimental aos do grupo de controle. O grupo de controle de Pasteur era o frasco de gargalo reto.
Agora considere o exemplo sobre a resistência do ar. Se desejarmos conduzir a experiência, precisaríamos de ao menos dois carros - um de forma mais esbelta, semelhante à do corpo de um pássaro, e o outro em forma de caixa. O primeiro modelo seria o grupo experimental e o segundo o grupo de controle. Todas as demais variáveis - o peso dos carros, os pneus e até mesmo a pintura - teriam de ser idênticas. A pista de teste e as condições que a afetam teriam de ser controladas ao máximo. 
Etapa 5: Analise os dados e conclusão
Durante uma experiência, os cientistas reúnem dados quantitativos e qualitativos. Em meio a essas informações, se eles tiverem sorte, estão indícios que podem ajudar a sustentar ou a rejeitar uma hipótese. O volume de análise necessário para chegar a uma conclusão pode variar amplamente. Como a experiência de Pasteur dependia de observações qualitativas sobre a aparência do caldo, a análise era bem simples. Ocasionalmente, é preciso usar ferramentas analíticas sofisticadas para analisar os dados. De qualquer forma, o objetivo final é provar ou negar uma hipótese e, ao fazê-lo, responder à pergunta original. 

Aplicações do Método Científico

Lembre-se de que esta é uma metodologia idealizada. Os cientistas não carregam uma lista dessas cinco etapas. O progresso é bastante fluido e aberto à interpretação. Um cientista pode passar boa parte de sua carreira na etapa de observação. Outro pode trabalhar sem que nunca dedique muito tempo a conceber e a conduzir experiências. Darwin passou quase 20 anos analisando os dados que recolheu antes de agir em relação a eles. Na verdade, boa parte do trabalho de Darwin foi puramente intelectual, como se ele estivesse tentando montar um grande quebra-cabeças. E, no entanto, ninguém argumentaria que sua teoria da seleção natural é menos valiosa ou menos científica, porque ele não seguiu rigorosamente o processo das cinco etapas.
young scientist
Hill Street Studios/Getty Images
Qualquer pessoa que tente resolver um problema pode realizar observações e usar o método científico
Também seria apropriado mencionar uma vez mais que esse método não está reservado a cientistas altamente treinados. Qualquer pessoa que tente solucionar um problema pode empregá-lo. Para ilustrar o ponto, considere o seguinte exemplo: você está indo a uma loja quando seu carro apresenta superaquecimento. No caso, o problema revelado pela observação (uma luz de alerta de temperatura) que lança à investigação se torna claro imediatamente. Mas o que estaria causando o superaquecimento? Uma hipótese poderia ser um defeito no termostato. Outra envolveria o radiador. Uma terceira seria que a correia do ventilador poderia ter se partido.
A solução mais simples, muitas vezes, representa o melhor ponto de partida. O mais fácil a fazer, nesse caso, é verificar a condição da correia do ventilador. Caso você descubra que ela está mesmo partida, há motivos para acreditar que seja essa a causa do superaquecimento. No entanto, ainda é necessário um teste para confirmar. O teste, no caso, envolveria substituir a correia e ligar o motor para ver se o carro se superaquece. Caso isso não aconteça, você pode aceitar a hipótese relacionada à correia do ventilador. Mas se a correia não estiver partida, ou se sua substituição não impedir o superaquecimento do carro, a hipótese terá de ser revista. 
Talvez você tenha percebido que o exemplo oferecido não contém uma hipótese em forma "se... então". Também pode ter percebido que não inclui grupo experimental e grupo de controle. Isso se deve ao fato de que problemas cotidianos não requerem esse tipo de formalidade. Mas requerem uma abordagem lógica e uma progressão de pensamento que resulte em uma hipótese passível de teste.
Assim, se qualquer um pode usar o método científico, por que ele desenvolveu conexão tão forte com ramos como a biologia, física e química? Porque os pesquisadores aplicam o método científico com um rigor que os não cientistas não utilizam. Estudaremos os motivos na próxima seção.

Importância do Método Científico

O método científico tenta minimizar a influência da parcialidade que o responsável pela experiência possa apresentar. Até mesmo o mais bem intencionado dos cientistas pode ser parcial. Isso resulta de crenças pessoais, bem como de crenças culturais, o que significa que qualquer ser humano filtra as informações com base em suas próprias experiências. Infelizmente, esse processo de filtragem pode fazer com que um cientista prefira um resultado a outro. Para alguém que esteja tentando resolver um problema doméstico, ceder a essa parcialidade não é uma questão séria. Mas na comunidade científica, onde resultados têm de ser revisados e reproduzidos, a parcialidade precisa ser evitada a todo custo. 
Essa é a função do método científico, que oferece uma abordagem objetiva e padronizada para a condução de experiências e melhora os resultados obtidos. Ao empregar uma abordagem padronizada nas investigações, os cientistas podem se sentir confiantes de estarem aderindo aos fatos e limitando a influência de idéias pessoais e preconcebidas. Mas, mesmo com uma metodologia rigorosa em ação, alguns cientistas ainda cometem erros. Por exemplo, podem considerar que uma hipótese representa a explicação de um fenômeno sem realizar testes que confirmem a suposição. Ou podem deixar de registrar com precisão certos erros, como erros de mensuração. Ou podem ignorar dados que não apóiem suas hipóteses. 
gregor mendel
Hulton Archive/Getty Images
Gregor Johann Mendel, cujo trabalho estabeleceu as bases para o estudo da genética
Gregor Mendel (1822-1884), padre austríaco que estudou traços hereditários em pés de ervilha e um dos pioneiros no estudo da genética, pode ter sido vítima de um erro conhecido como parcialidade de confirmação. A parcialidade de confirmação é uma tendência a acatar dados que sustentem uma tese e rejeitar aqueles que a contestam. Alguns observadores argumentam que Mendel obteve determinado resultado utilizando uma amostra de dimensões modestas e depois continuou a reunir e a mensurar dados a fim de garantir que seu resultado original fosse confirmado. Ainda que experiências subseqüentes tenham comprovado a hipótese de Mendel, muita gente ainda questiona seus métodos experimentais.
Na maior parte do tempo, porém, o método científico funciona, e funciona bem. Quando uma hipótese ou grupo de hipóteses correlatas recebe confirmação por meio de testes experimentais repetidos, o resultado pode se tornar uma teoria. Teorias têm escopo muito mais amplo do que hipóteses e oferecem imenso poder de previsão. A teoria da relatividade, por exemplo, previu a existência de buracos negros muito antes que existissem provas capazes de sustentar a idéia. Deve-se ressaltar, no entanto, que um dos objetivos da ciência não é só confirmar teorias, mas refutá-las. Quando isso acontece, uma teoria precisa ser modificada ou descartada de todo. 

Limitações do Método Científico

O método científico é comprovadamente uma ferramenta poderosa, mas tem suas limitações. Essas limitações se baseiam no fato de que uma hipótese precisa ser passível de teste e de refutação, e que experiências e observações precisam ser passíveis de repetição. Isso coloca certos tópicos além do alcance do método científico. Por exemplo, a ciência não pode provar ou refutar a existência de Deus ou de qualquer outra entidade sobrenatural.

Ocasionalmente, os princípios científicos são usados para tentar emprestar credibilidade a certas idéias não científicas, como a teoria do design inteligente. O design inteligente representa uma afirmação de que certos aspectos da criação do universo e da vida só poderiam ser explicados sob o contexto de um poder divino inteligente. Os proponentes do design inteligente tentam mascarar esse conceito como teoria científica a fim de torná-lo mais aceitável aos responsáveis pela preparação de currículos escolares. Mas o design inteligente não é científico porque não se pode testar a existência de um ser divino por meio de uma experiência. 
É uma onda, é uma partícula, é uma onda...
Na maior parte do tempo, não pode haver duas teorias concorrentes para descrever um mesmo fenômeno. Mas no caso da luz, uma teoria não foi suficiente. Muitas experiências sustentam a idéia de que a luz se comporta como uma onda longitudinal. Tomadas em conjunto, essas experiências geraram a teoria da luz. Outras experiências, no entanto, sustentam a idéia de que a luz se comporta como partícula. Em lugar de descartar uma teoria e manter a outra, os físicos optaram por uma dualidade onda/partícula para descrever o comportamento da luz.
A ciência tampouco é capaz de realizar julgamentos de valor. Ela não pode afirmar que o aquecimento global é ruim, por exemplo. Pode estudar as causas e efeitos do aquecimento global e relatar os resultados obtidos, mas não pode afirmar que dirigir utilitários esportivos é errado ou que as pessoas que não tenham substituído suas lâmpadas comuns por lâmpadasfluorescentes são irresponsáveis. Ocasionalmente, certas organizações empregam dados científicos para promover suas causas. Isso tende a confundir a distinção entre ciência e moral e encoraja o desenvolvimento de "pseudociência", que tenta legitimar um produto ou idéia por meio de alegações que não foram submetidas a testes rigorosos.
No entanto, se usado devidamente, o método científico é uma das mais valiosas ferramentas que os seres humanos já desenvolveram. Ele ajuda a resolver os problemas comuns que encontramos em casa e ao mesmo tempo a compreender questões profundas sobre o mundo e o universo em que vivemos. 
Para mais informações sobre o método científico, veja os links da próxima seção.